REACTIONS OF EPOXIDES - XXV¹. BF₃-CATALYSED REARRANGEMENT OF 3,3-ETHYLENEDIOXY-5,6α-EPOXY-5α-CHOLESTANE

J.M. Coxon, M.P. Hartshorn and B.L.S. Sutherland

ſ

Department of Chemistry, University of Canterbury, Christchurch, New Zealand. (Received in UK 19 August 1969; accepted for publication 5 September 1969)

Bowers et al.² have reported the isolation of a 3-ketal-6 β -fluoro-5 α hydroxy compound (1) as the product (>60%) of the treatment of the 3-ketal-5 α , 6 α -epoxide (2) with BF₃-etherate in benzene-ether (1:1) solution. Any attempt to compare this result with other BF₃-epoxide rearrangements carried out in benzene solution must now be viewed with caution since it has been shown¹ that the products of BF₃-catalysed rearrangement of 4 β ,5-epoxy-5 β -cholestane are markedly dependent upon the benzene:ether ratio of the solvent.

We now report the results of the BF_3 -catalysed rearrangement (1.5 min.) of 3,3-ethylenedioxy-5,6a-epoxy-5a-cholestane in benzene solution. The major products, separated by chromatography, were as follows: <u>fluorohydrin</u> (1; 21%), m.p. 102-103°, $[\alpha]_D - 17°$, γ_{max} 3500 cm.⁻¹, NMR § 4.20 ppm (OH), 4.23 (6a-H; $J_{H,F} = 50$ cps), 3.95 (ketal), 1.06 ($C^{19}H_3$; $J_{CH_3,F} = 5$ cps), 0.67 ($C^{18}H_3$); 5a-and 5β-3-<u>ketal</u>-6-<u>ketones</u> (3; 20%), γ_{max} 1710 cm.⁻¹, NMR § 0.67 ppm ($C^{18}H_3$), 0.76 ($C^{19}H_3$, 5a-), 0.86 ($C^{19}H_3$, 5β-), and hydrolysis to the known³ 5a-cholesta-3,6-dione; <u>rearranged</u> Δ^9 -<u>olefin</u> (4; 9%), a gum, $[\alpha]_D + 6°$, γ_{max} 3420 cm.⁻¹, $\varepsilon_{200 \text{ nm}}$ 10,000, NMR § 3.50 ppm (6β-H; J = 12.5 cps, J' = 5 cps), 0.92 (5β-CH₃), 0.77 ($C^{18}H_3$), and CrO₃-pyridine oxidation gave the 6-ketone NMR §1.32 ppm (5β-CH₃), followed by hydrolysis to the known⁴ diketone (5); <u>ester</u> (6; 35%), a gum, $[\alpha]_D + 5°$, γ_{max} . 3400, 1730, 1620 cm.⁻¹, NMR § 5.16, 4.83 ppm (CH₂=C ζ), 4.27 (6β-H, -CH₂-CH₂OH), 3.82 (-CH₂-CH₂OH), 1.01 ($C^{19}H_3$), 0.69 ($C^{18}H_3$), and reduction with LiAlH₄ to the <u>diol</u> (7), m.p. 89-91°, $[\alpha]_D + 19°$,

$$𝔅_{max.}$$
 3300, 1620 cm.⁻¹, NMR δ 5.13, 4.80 ppm (CH₂=Cζ), 4.25 (6β-H;
J = 11 cps, J' = 4 cps), 3.62 (-C³H₂OH), 0.98 (C¹⁹H₃), 0.69 (C¹⁸H₃).
We believe that the ester (6) constitutes a further example of
a product formed via a discrete C-5 carbonium ion.

References

- Determined at 60 Mc for CDCl₃ solutions.
- B.N. Blackett, J.M. Coxon, M.P. Hartshorn and K.E. Richards, 1. Tetrahedron, (1969), in press.
- 2. A. Bowers, L.C. Ibáñez and H.J. Ringold, <u>Tetrahedron</u>, 7, 138 (1959).
- B. Ellis and V. Petrow, <u>J. Chem. Soc</u>., 1078 (1939). 3.
- V. Petrow, O. Rosenheim and W.W. Starling, <u>J. Chem. Soc</u>., 667 (1938). 4.

