REACTIONS OF EPOXIDES - XXV ${ }^{1} . \mathrm{BF}_{3}$-CATALYSED
REARRANGEMENT OF 3,3-ETHYLENEDIOXY-5, $6 \alpha-E P O X Y-5 \alpha-C H O L E S T A N E ~$
I J.M. Coxon, M. P. Hartshorn and B.L.S. Sutherland
Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
(Received in UK 19 August 1969; accepted for publication 5 September 1969)
Bowers et al. 2 have reported the isolation of a 3-ketal-6ß-fluoro- $5 \alpha-$ hydroxy compound (1) as the product ($>60 \%$) of the treatment of the 3-ketal-5a, 6a-epoxide (2) with BF_{3}-etherate in benzene-ether ($1: 1$) solution. Any attempt to compare this result with other BF_{3}-epoxide rearrangements carried out in benzene solution must now be viewed with caution since it has been shown that the products of BF_{3}-catalysed rearrangement of $4 \beta, 5$-epoxy-5 β-cholestane are markedly dependent upon the benzene:ether ratio of the solvent.

We now report the results of the BF_{3}-catalysed rearrangement (1.5 min .) of 3,3-ethylenedioxy-5,6 -epoxy-5a-cholestane in benzene solution. The major products, separated by chromatography, were as follows: fluorohydrin (1; 21%), m.p. 102-103 ${ }^{\circ},[\alpha]_{D}-17^{\circ}, \nu_{\max } 3500 \mathrm{~cm}{ }^{-1}$, $\mathrm{NMR}^{(1)} \delta 4.20 \mathrm{ppm}(\mathrm{OH}), 4.23$ $\left(6 \alpha-\mathrm{H} ; \quad \mathrm{J}_{\mathrm{H}, \mathrm{F}}=50 \mathrm{cps}\right), 3.95$ (ketal), $1.06\left(\mathrm{C}^{19} \mathrm{H}_{3} ; \mathrm{J}_{\mathrm{CH}_{3}, \mathrm{~F}}=5 \mathrm{cps}\right), 0.67$ $\left(C^{18} \mathrm{H}_{3}\right)$; 5α-and $5 \beta-3$-ketal-6-ketones $(3 ; 20 \%)$, $\rangle_{\max } 1710 \mathrm{~cm} .^{-1}$, NMR $\delta 0.67 \mathrm{ppm}$ $\left(\mathrm{C}^{18} \mathrm{H}_{3}\right), 0.76\left(\mathrm{C}^{19} \mathrm{H}_{3}, 5 \alpha-\right), 0.86\left(\mathrm{C}^{19} \mathrm{H}_{3}, 5 \beta-\right)$, and hydrolysis to the known ${ }^{3}$ 5α-cholesta-3,6-dione; rearranged Δ^{9}-olefin (4; 9\%), a gum, $[\alpha]_{D}+6^{\circ}$, $\nu_{\text {max }}$ $3420 \mathrm{~cm} .^{-1}, \varepsilon_{200 \mathrm{~nm}} 10,000$, $\operatorname{NMR} \delta 3.50 \mathrm{ppm}\left(6 \beta-H ; J=12.5 \mathrm{cps}, \mathrm{J}^{\prime}=5 \mathrm{cps}\right)$, $0.92\left(5 \beta-\mathrm{CH}_{3}\right), 0.77\left(\mathrm{C}^{18} \mathrm{H}_{3}\right)$, and CrO_{3}-pyridine oxidation gave the 6-ketone NMR $\delta 1.32 \mathrm{ppm}\left(5 \beta-\mathrm{CH}_{3}\right)$, followed by hydrolysis to the known ${ }^{4}$ diketone (5); ester (6; 35\%), a gum, $[a]_{D}+5^{\circ}$, $\nu_{\max } .3400,1730,1620 \mathrm{~cm} .^{-1}$, NMR $\delta 5.16,4.83 \mathrm{ppm}$ $\left(\mathrm{CH}_{2}=\mathrm{C}\right.$ - $), 4.27\left(6 \beta-\mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}\right), 3.82\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}\right), 1.01\left(\mathrm{C}^{19} \mathrm{H}_{3}\right), 0.69$ $\left(C^{18} H_{3}\right)$, and reduction with LiAlH_{4} to the diol (7), m.p. 89-91 ${ }^{\circ},[\alpha]_{D}+19^{\circ}$,
$\nu_{\max .} 3300,1620 \mathrm{~cm} .^{-1}$, NMR $85.13,4.80 \mathrm{ppm}\left(\mathrm{CH}_{2}=\mathrm{C}=\right), 4.25(6 \beta-\mathrm{H}$; $\left.J=11 \mathrm{cps}, J^{\prime}=4 \mathrm{cps}\right), 3.62\left(-\mathrm{C}^{3} \mathrm{H}_{2} \mathrm{OH}\right), 0.98\left(\mathrm{C}^{19} \mathrm{H}_{3}\right), 0.69\left(\mathrm{C}^{18} \mathrm{H}_{3}\right)$. We believe that the ester (6) constitutes a further example of a product formed via a discrete C-5 carbonium ion.

References

* Determined at 60 Mc for CDCl_{3} solutions.

1. B.N. Blackett, J.M. Coxon, M. P. Hartshorn and K.E. Richards, Tetrahedron, (1969), in press.
2. A. Bowers, L.C. Ibáñez and H.J. Ringold, Tetrahedron, 7, 138 (1959).
3. B. Ellis and V. Petrow, J. Chem, Soc., 1078 (1939).
4. V. Petrow, 0. Rosenheim and W.W. Starling, Je Chem. Soc., 667 (1938).

(1)

(4)

(2)

(5)

(3)

(6)

(7)
